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Abstract

Cleft lip and cleft palate are among the most common birth defects worldwide. There is a genetic 

component to the development of these malformations, as well as evidence that environmental 

exposures and prescription drug use may exacerbate or even produce these manifestations. Thus, it 

is important to understand the underlying mechanisms and when these exposures affect 

development of the growing fetus. The purpose of this investigation was to critically review the 

available literature related to orofacial cleft formation following chemical exposure and identify 

specific time frames for windows of sensitivity. Further, an aim was to evaluate the potential for 

predicting effects in humans based on animal studies. Evidence indicates that chemical causes of 

cleft palate development are due to dose and timing of exposure, susceptibility of the species (i.e., 

the genetic makeup), and mechanism of action. Several studies demonstrated that dose is a crucial 

factor; however, some investigators argued that even more important than dose was timing of 

exposure. Data show that the window of sensitivity to environmental teratogens in the 

development of cleft palates is quite narrow and follows closely the window of palatogenesis in 

the fetus of any given species.

Cleft lip and cleft palate are birth defects termed orofacial clefts, which are some of the most 

common birth defects. Studies in genetics and embryology suggested that clefts of the 

primary (hard) palate that involve the lip and/or palate have a different mechanism of origin 

than those clefts affecting only the secondary palate (Parker et al. 2010). Therefore, these 

malformations are treated separately in most investigations. The Centers for Disease Control 

and Prevention (CDC) reported that in the United States, the estimated number of annual 

cases of babies born with a cleft palate was 2651 (1 in 1574 births) and of babies born with a 

cleft lip with or without a cleft palate was 4437 (1 in 940 births) for the time period of 2004–

2006 (Parker et al. 2010). These clefts were probably caused by a combination of genetic 

predisposition and environmental exposures (Watkins et al. 2014). Increased risk of cleft 

palate occurrence is also associated with smoking during pregnancy (Little et al. 2004; 

Honein et al. 2007; 2014) and with diabetes diagnosed in mothers before pregnancy (Correa 

et al. 2008).
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In humans, the facial region develops between wk 4 and 8 of gestation, and palatal 

development specifically takes place between wk 7 and 12 of gestation (Sucheston and 

Cannon 1973). The development can be divided into formation of the primary palate 

comprised of the prolabium, premaxilla, and cartilaginous septum and formation of the 

secondary palate consisting of the hard and soft palates (Sucheston and Cannon 1973). By 

wk 4 of gestation, five processes (two maxillary, two mandibular, and a single frontal) are 

observed surrounding the stomodeum. During wk 5, olfactory placodes occur that develop 

into pits surrounded by the medial and lateral nasal processes. During wk 6, the maxillary 

and lateral nasal processes merge, and the two mandibular processes unite. Between wk 7 

and 8, the upper lip is completed by maxillary mesoderm that joins at the midline. The 

maxillary and mandibular processes form the cheeks. In addition, in wk 7, two vertical 

palatal processes extend from the primary palate to the tonsillar pillars. Between wk 8 and 9, 

these processes migrate to a horizontal position but remain separated by the tongue. The 

secondary palate is fully formed by fusion of the processes during wk 10 to 12 when the 

tongue descends to the bottom of oral cavity and the teeth and neck are formed.

The mouse was suggested as a reliable model to research genetic and environmental causes 

affecting normal development of the lip and palate (Gritli-Linde 2012). During early 

craniofacial development, the embryos of mice and humans look similar, and their 

developmental stages resemble each other. In addition, both species share genes that are 

involved in orofacial clefting. The major difference pertains to the time scale when each 

developmental event occurs. Mouse palatogenesis starts at embryonic day 11.5 and 

manifests with the formation of palatal shelves extending from the maxillae (Chai and 

Maxson 2006). Between day 12.5 and 13.5, the palatal shelves protrude downwards laterally 

on both sides of the tongue. Meanwhile, the maxillary and mandibular processes unite, the 

tongue descends, and the palatal shelves position horizontally above the tongue. Fusion of 

the palatal shelves occurs on day 14.5. The timetable of events in humans and mice in 

formation of the palate is presented in Figure 1.

Similar developmental events also occur in rats. However, in this species, the palatal shelf 

elevation occurs at day 16.4 (Ferguson 1978). The palatal shelf elevation and shelf fusion 

start in the anterior part; the extreme posterior part of each shelf is horizontal from the 

beginning of rat palatogenesis and develops into soft palate (Ferguson 1978; 1981). Studies 

in other animals may add valuable information, because not all species are affected by the 

same chemical to the same extent; for example, in the case of dioxins, there are differences 

in Ah receptor levels and in affinities for the ligand (Agency for Toxic Substances and 

Disease Registry [ATSDR] 1998).

As previously indicated, environmental exposures to toxic chemicals are one of the possible 

causes of orofacial congenital malformations. The Agency for Toxic Substances and Disease 

Registry (ATSDR) publishes toxicological profiles for hazardous chemicals, and one of the 

specific end-points detailed in the profiles is developmental toxicity. The profiles were used 

as a major source of information for this review. The purposes of this review are as follows:

• Review available animal data related to cleft palate formation following chemical 

exposure and make comparisons.
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• Evaluate how narrow the windows of sensitivity are.

Methods

Literature Search

The primary search examined ATSDR Toxicological Profiles (n = 173) and Addenda (n=41) 

in search of evidence of cleft palate development in association with chemical exposure. All 

profiles and addenda that described studies with the outcome of cleft palate were moved into 

the data extraction phase (n = 28 profiles and 1 addenda).

Data Extraction

For animal studies, the following data from each study were extracted: chemical name and 

form; species and strain; exposure route and vehicle; exposure time, duration, and 

frequency; no-observed-adverse-effect level (NOAEL), where applicable; and lowest-

observed-adverse-effect level (LOAEL).

Results

Mouse

The mouse was the most utilized model for examining cleft palate development, which was 

not unexpected, as mouse models are versatile, easily manipulated genetically, and have 

palatal development similar to humans (Gritli-Linde 2012). Figure 2 contains data extracted 

from these studies. Taken together, these studies suggest a short duration of sensitivity that is 

a narrow window of susceptibility for cleft palate development.

CD-1—CD-1 mice were the most commonly used strain in these identified studies. Many of 

the studies examined durations of exposure that encompassed the periods of mouse 

development specific to palatogenesis, with the most typical being for gestational days (GD) 

6–15 or GD 7–16 (Courtney 1976; Courtney et al. 1976; Marks et al. 1982; National 

Toxicology Program [NTP] 1983; Rogers et al. 1981; Tyl and Neeper-Bradley 1989). All 

investigations that perused this range of gestational days found significant increases in the 

incidence of cleft palate (Figure 2). A few studies examined even narrower exposure 

windows of one to three days. Bolon et al. (1993) investigated the effects of methanol and 

noted that exposure during GD 7–9 or GD 9–11 significantly elevated the incidence of cleft 

palate. In addition, two other studies evaluated single day exposures. A single exposure to 

endrin on GD 9 (Ottolenghi et al. 1974) or a single exposure to gamma radiation on GD 12 

(Saad et al. 1991) each significantly induced development of cleft palate (Figure 2).

C57BL/6J—C57BL/6J was another mouse strain widely used in these developmental 

studies. Chlorinated dibenzo-p-dioxins (CDD) and chlorodibenzofurans (CDF) were 

extensively studied within this specific mouse strain, and both chemicals were investigated 

within narrow exposure windows. Four studies examined CDD, and all focused on single 

day exposures (Abbott and Birnbaum 1989a; 1989b; Dasenbrock et al. 1992; Weber et al. 

1985; Yuan et al. 2012). Data shown in Figure 2 indicate that a single-day exposure to CDDs 

during GD 9–12 was sufficient to significantly increase the incidence of cleft palate within 
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this mouse strain. Similarly, studies examining CDF also suggest a narrow window of 

exposure for induction of cleft palate development. Two studies demonstrated significant 

elevation in cleft palate after exposure to CDF on GD 10–13 (Birnbaum et al. 1987a; 1987b; 

Weber et al. 1984), and two additional studies found that a single-day exposure to CDF on 

GD 12 was sufficient to induce significant cleft palate development within C57BL/6J mice 

(Hassoun et al. 1984; Yamada et al. 2006) (Figure 2). While these investigations were 

typically designed to determine dose level rather than day of exposure, these results, taken 

together, suggest that cleft palate development as a consequence of chemical exposure may 

be induced during a very narrow window of exposure.

Rat

The rat is another highly utilized model in studies on cleft palate development (Figure 2). 

Similar to the mouse, most investigations employing the rat as a model also provide an 

opportunity to more accurately identify the specific time and duration of potential windows 

of sensitivity to chemical exposures.

Wistar—Wistar rats were the most commonly used strain in these studies. Many of the 

investigations focused on exposure durations between 8 and 11 d; these exposures were 

typically within the period of GD 6–17. However, several studies also noted significantly 

increased incidence of cleft palate after 3-d exposure durations during GD 7–9 (Ema et al. 

1994; 1995a), GD 11–13 (Uriu-Adams et al. 2001), or GD 13–15 (Ema et al. 1994; 1995a; 

1995b). Further, one study investigated the effects of single-day exposure to polybrominated 

biphenyls (PBB) and found that exposure to a high dose of 800 mg/kg on any single day 

between GD 6 and GD 14 was sufficient to significantly increase the incidence of cleft 

palate development (Beaudoin 1977) (Figure 2).

Sprague-Dawley—Five studies were identified that used Sprague-Dawley (SD) rats to 

investigate cleft palate development. Results of these studies are helpful in narrowing the 

window of sensitivity for rats. Two of these studies reported that exposures during GD 2–20 

(Thibodeaux et al. 2003) or GD 6–15 (Schwetz et al. 1973) induced significant cleft palate 

development. Several other investigations observed similar effects with narrower windows of 

exposure such as GD 11–15 (Zangar et al. 1989) and GD 12–14 (Springer et al. 1986) 

(Figure 2). Further, Bruni et al. (1994) showed that exposure to gamma radiation on GD 9.5 

was enough to induce cleft palate formation. Taken together, these studies help to define a 

small window of sensitivity to chemically induced cleft palate development in rats.

Rabbit

Boron (in the form of boric acid), CDDs (specifically 2,3,7,8-tetrachlorodibenzo-p- dioxin 

[TCDD]), and cobalt (from a radiocobalt source) were found to induce cleft palates in the 

developing rabbit model. Price et al. (1996) demonstrated that boron exposure during GD 6–

19 significantly enhanced the occurrence of cleft palates (Figure 2). Exposure to 2,3,7,8-

TCDD on GD 6–15 also resulted in a significant rise in the incidence of cleft palates 

(Giavini et al. 1982). In addition, a single-day exposure to a radiocobalt source on either GD 

10, 11, or 12 was found to significantly increase development of cleft palates in rabbits 

(Chang et al. 1963) (Figure 2). It is difficult to determine a specific window of susceptibility 
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for cleft palate formation when the results are also dependent on the exposure dose rather 

than simply the timing, such as day(s) of exposure. However, it is interesting to note that 

each of these three studies helped to narrow down a window of sensitivity in rabbits. Price et 

al. (1996) had the largest window of exposure, but it included the exposure time frames of 

Giavini et al. (1982), which further included the windows from Chang et al. (1963). It should 

be noted that exposure at a high enough dose on any single day between GD 10 and 12 was 

sufficient to induce cleft palate development in rabbits (Figure 2).

Hamster

Studies investigating cleft palate development in hamsters used a very narrow window of 

exposure days. Exposure to aldrin/dieldrin on any of GD 7, 8, or 9 induced significant 

development of cleft palate (Ottolenghi et al. 1974). In addition, exposures to endrin 

(Ottolenghi et al. 1974) or 2,3,7,8-TCDD (Kransler et al. 2007) on GD 9 or mercuric acid on 

GD 8 (Gale and Ferm 1971) each resulted in a significant elevation in cleft palate 

development (Figure 2). While the hamster model has the same limitations as those 

previously discussed for mouse and rat, namely, that differences in susceptibility are also 

dependent on dose level rather than simply the time such as day(s) of exposure; these 

findings, as shown in Figure 2, suggest that a single-day exposure on any of GD 7, 8, or 9 is 

sufficient to induce significant cleft palate development.

Discussion

From a review of the literature cited in the preceding, it was confirmed that the main 

elements that determine whether a chemical exposure causes development of cleft palate are 

the specific chemical, dose, timing of exposure, and susceptibility of the species. In addition, 

inherent in this is the mechanism of action (MOA) of the chemical, as described in the 

following.

Dose and Timing

As demonstrated in our results, the window of sensitivity to environmental teratogens in the 

development of cleft palate is quite narrow and follows closely the window of palatogenesis 

in the fetus of any given species. It is in sharp contrast to neurological development, since 

the neurological system develops not only in utero, but also for some period after birth 

(Makri et al. 2004; Cooke 2014; S. Ingber and H. R. Pohl personal communication 2015). 

Therefore, the window of sensitivity is broader for neurodevelopmental effects. Obviously, 

no palatal clefts are expected following exposures during the period after development of the 

orofacial area. However, a single-day exposure to BP-6 before the palatogenesis window 

(Beaudoin 1977) and even exposure to TCDD 2 wk prior to conception (Giavini et al. 1983) 

resulted in adverse effects in rats. This may be attributed to the longer half-lives of these 

chemicals and their persistence in the body (ATSDR 1998; 2004). Several studies 

demonstrated that dose is a critical factor, showing the NOAEL following administration of 

lower doses and LOAEL following higher doses (Domingo et al. 1989; Ema et al. 1991; 

Faqi et al. 1997; Hackett et al. 1984; Huuskonen et al. 1994; Kransler et al. 2007; Noda et al. 

1991; NTP 1983; Schwetz et al. 1973).
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However, some investigators argued that even more important than dose was the timing of 

exposure. When retinoic acid (RA) was administered to rats on different treatment days 

within the GD 8–12 period, exposure on days GD 10 and GD 10.5 produced the most severe 

effects (Gunston et al. 2005). Interestingly, a dose of 30 mg/kg RA on GD 8–11 produced 

more severe consequences than a higher dose of 100 mg/kg administered on GD 8–9, 

indicating an even narrower window for severe effects on GD10 and 11. Retinoic acid is a 

known mor-phogen and was studied extensively (Schilling et al. 2012). Shenefelt (1972) 

treated pregnant hamsters with single doses of RA sodium salt at different stages of 

pregnancy. Shenefelt (1972) determined that a single oral dose of RA on any day during GD 

7–11 produced significant increases in cleft palate development in fetuses, with peaks on 

GD 8 and 9.

Another study investigating timing of exposure rather than dose investigated the fetal effects 

of methanol inhalation exposure on pregnant CD-1 mice (Rogers and Mole 1997). 

Researchers assessed critical periods for methanol developmental toxicity by exposing 

pregnant mice to 10,000 ppm methanol or to filtered air on 2 consecutive days from GD 

6-13 or on a single day during GD 5–9. Cleft palate was induced in fetuses with 2-day 

exposures on any of GD 6–7 through GD 11–12, with peak induction on GD 7–8. Further, 

single-day exposures from GD 5 through GD 9 resulted in significant increases in cleft 

palate in the fetuses with peak on GD 7. Tiboni et al. (2006) attempted to define critical 

periods for cleft palate development in mice after exposure to itraconazole. Cleft palate 

defects developed in fetuses after single-day exposures during GD 9–11, with the most 

significant effects being observed after a single exposure on GD 10.

Interestingly, an earlier study determined two critical periods for cleft palate development. 

Peterka and Jelinek (1978), in a study in ICR-Velaz mouse embryos, not only determined 

two critical periods of development but also defined the independent causes of cleft palate 

development within these two critical periods. Treatment with a teratogen on GD 12 resulted 

in development of cleft palate in 80% of embryos, while treatment with a different teratogen 

on GD 14 resulted in 90% treated embryos developing cleft palate. A similar study found 

that the critical period for induction of cleft palate might depend on the nature of the 

teratogen. Gebhardt and Schade (1969) treated pregnant Swiss albino mice with four 

different teratogens to investigate whether the critical periods differed. Data showed that 

treatment with x-rays or cyclophosphamide initiated the most significant induction of cleft 

palate on GD 11 or 12, whereas the optimal induction period for induction of cleft palate by 

dexamethasone or 6-aminonicotinamide was GD 13 or 14.

Species Susceptibility and Mechanism of Action (MOA)

Although the emphasis of this review deals with environmental chemicals and their role in 

inducing cleft palates, this information would not be complete without acknowledging that 

genetics also play a major role in development of this malformation. In humans, there are 

significant differences in occurrence of this birth defect depending upon populations, 

ethnicity, and gender (Christensen 1999; Cooper et al. 2006; Mossey 2007). Asians and 

Native Americans have the highest rate of cleft lip with or without cleft palate (about 2 per 

1,000 live births). Caucasians have a rate of about 1 per 1,000, and Africans have the lowest 

Buser and Pohl Page 6

J Toxicol Environ Health B Crit Rev. Author manuscript; available in PMC 2017 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rate of approximately 1 per 2,500 births. Gender differences noted in cleft lip with cleft 

palate gave a male to female ratio of 2:1. However, for cleft palate only, the ratio is 1:1. In 

Colorado, during the years 1982–1988, odds ratios (OR) of male gender (OR = 1.62), white 

race (OR = 2.87), and nonmetropolitan residence (OR = 1.59) were linked with elevated risk 

of displaying a cleft malformation of any type at birth (Amidei et al. 1994). In California, 

prevalence ratios (PR) were established for cleft lip with or without cleft palate and cleft 

palate alone in a cohort of more than 2 million births during the years 1983–1992 (Croen et 

al. 1998). Racial variations were as follows: Asians had the highest PR and African-

Americans the lowest PR, with Caucasians intermediate. One interesting finding pointed to 

possible environmental factors affecting the risk of developing the clefts. There was a 

numerically lower PR among offspring of foreign-born Chinese mothers compared with 

United States-born Chinese mothers, and a quantitatively higher PR among offspring of 

foreign-born Filipino mothers versus the United States-born (Croen et al. 1998). However, 

the subcohorts were small and confidence intervals (CI) around these risks were wide. When 

a segregation analysis of cleft lip with or without cleft palate was conducted using Danish 

and Japanese cohorts, Chung et al. (1986) proposed that the Danish inheritance pattern is a 

combination of a major (recessive) gene action and of multifactorial inheritance. In contrast, 

Japanese data indicated multifactorial inheritance with markedly lower recurrence risks 

among relatives, although the overall incidence of malformation in the cohort was higher. 

There are many studies identifying genomic regions linked to development of cleft lip with 

or without cleft palate. It is beyond the scope of this review to list them all; interested 

readers can access the reviews on this topic (Marazita 2012; Prescott et al. 2001).

The mouse served as a model to study the genetics of cleft palate development (Gritli-Linde 

2008; 2012; Juriloff and Harris 2008). Evidence indicates that mouse models demonstrate 

diversity of causative genes and mutations, and the effects such as clefting are likely 

genetically and developmentally heterogeneous (Juriloff and Harris 2008). This also applies 

to humans. Possible interaction of genetic and environmental factors has always been 

acknowledged in the literature. Prenatal secondhand smoke (SHS) exposure is one such 

example. Prenatal SHS exposure has been commonly associated with cleft palate 

development. Six studies examining prenatal SHS exposure via either direct maternal 

smoking or passive maternal smoking (defined as maternal exposure to smoke in the home 

or other public places during early pregnancy) found that SHS exposure was significantly 

positively associated with cleft palate development (Goncalves Leite and Koifman 2009; 

Honein et al. 2007; Jia et al. 2011; Li et al. 2010; Shaw et al. 2009; Zhang et al. 2011). 

Further, a meta-analysis by Little et al. (2001) analyzed 24 case-control and cohort studies 

and reported that consistent significant associations were found between maternal smoking 

and cleft palate development. Another meta-analysis by Molina-Solana and colleagues 

(2012) noted an overall significant rise in cleft palate incidence based on six studies. 

Recently, genetic research demonstrated evidence of gene–environment interaction for two 

genes on chromosome 4p16.1 and environmental tobacco smoke in 259 Asian case–parents 

trios (Wu et al. 2014).

The mechanism underlying cleft induction is not fully understood for all chemicals. 

However, the MOA of dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin or TCDD) and dioxin-

like chemicals was studied extensively. TCDD and dioxin-like compounds act via a specific 
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receptor present in all cells: the aryl hydrocarbon (Ah) receptor (Poland and Glover 1973). 

This action is further mediated by the Ah receptor nuclear translocator (ARNT). ARNT 

interacts with the liganded Ah receptor to form a heterodimeric DNA-binding protein 

complex that binds DNA and activates gene transcription (Whitlock 1993).

As illustrated in Figure 2, exposure to TCDD during gestation produced an increased 

incidence of cleft palate in offspring of mice (Abbott and Birnbaum 1989a; Courtney 1976; 

Dasenbrock et al. 1992; Neubert and Dillman 1972; Smith et al. 1976; Weber et al. 1985), 

rats (Giaviani et al. 1983; Huuskonen et al. 1994), and rabbits (Giavini et al. 1983). Some 

clefts were induced without a notable maternal toxicity, and the most sensitive species was 

the mouse (Couture et al. 1990). An in vitro study with human embryonic palatal shelves 

indicated that human palates are less sensitive than C57BL/6N mouse palates to TCDD 

exposure (Abbott and Birnbaum 1991). Abbott et al. (1994a; 1994b) proposed that the 

TCDD-induced effects on palatal development may be mediated by the Ah receptor. 

Exposure to TCDD resulted in a dose-dependent down-regulation of the Ah receptor 

throughout the palate, which may have occurred at the transcriptional level as decreases in 

mRNA were also observed (Abbott et al. 1994a). A proof of the Ah receptor involvement 

originated from a study in Ahr-null mutant mice that were lacking the Ah receptor (Mimura 

et al. 1997). TCDD induced no cleft palates in the Ahr-null fetuses, but in heterozygotes 

with Ahr+/- genotypes, a haplo-insufficiency was found in the incidence of the 

malformation.

TCDD-induced cleft palate is produced by failure of opposing palatal shelves to fuse (Pratt 

et al. 1984). Under normal development, there is a cessation of medial cell proliferation, a 

degeneration of peridermal medial cells, and a transformation of basal cells to mesenchymal 

cells as the opposing palatal shelves come into contact and fuse (Abbott and Birnbaum 

1989b). TCDD exposure alters medial cell proliferation and differentiation, resulting in the 

formation of stratified squamous epithelium. Abbott and Birnbaum (1990) postulated that 

the altered proliferation and differentiation of the medial cells may be attributed to TCDD-

induced reductions of several growth factors, including epidermal growth factor (EGF), 

transforming growth factor (TGF)-α, and TGF-β1, and increases in EGF receptor 

expression. EGF and TGF-α which both bind to the EGF receptor stimulate epithelial 

proliferation and differentiation and TGF-β1 inhibits epithelial proliferation. The elevated 

levels of EGF receptor appear to compensate for reduced EGF and TGFα levels resulting in 

continued proliferation. Teratogenicity of TCDD was studied in wild-type and knockout (−/

−) mice that did not express EGF, TGF-α, or both EGF and TGF-α (Bryant et al. 2001). 

Cleft palates did not develop in EGF (−/−) and in EGF (−/−) + TGF-α (−/−) fetuses treated 

with TCDD, confirming the fact that EGF affects induction of cleft palate by TCDD. In 

addition, insulin-like growth factor 2 (Igf2) may also play a role in TCDD-induced 

teratogenicity (Wang et al. 2011).

The studies just cited demonstrate the impact of toxicodynamic differences among species 

on susceptibility to environmentally induced cleft palate. Toxicokinetic differences are also 

important. Dioxins are metabolized by CYP1A2 enzymes. The CYP1A1, CYP1A2, and 

CYP1B1 genes are upregulated by the Ah receptor. Dragin et al. (2006) demonstrated that 

mouse fetuses were protected against cleft palates by maternal hepatic CYP1A2 
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sequestering TCDD. Substitution of the human CYP1A2 transgene provided the same 

protection. In contrast, offspring of CYP1A2 (−/−) dams showed about sixfold higher 

sensitivity to cleft palate, hydronephrosis, and lethality after exposure to TCDD. CYP1A1 

and CYP1B1 did not display any marked influence on development of birth defects.

Chlorinated dibenzofurans (CDF) and polybrominated dibenzofurans (PBDF) exert the same 

MOA as TCDD. However, when C57BL/6N mice were exposed on GD 10 to TCDD or three 

different PBDF, potency of the PBDF was lower than that of TCDD (Birnbaum et al. 1991). 

Pretreatment of C57BL/6N mice with hexachlorobiphenyl produced a limited antagonism of 

TCDD teratogenicity, as evidenced by cleft palate and/or hydronephrosis (Morrissey et al. 

1992).

Altered expression of growth factors might be responsible for induction of cleft palates in 

mice exposed on GD 10 or 12 to TCDD alone or TCDD and RA (Abbott and Birnbaum 

1990). The reduction was greater with exposures on GD 10. Abbott and Pratt (1991) also 

reported that retinoids altered the expression of EGF receptors in vitro. Subsequently, Jacobs 

et al. (2011) noted that secondary palate development was dependent on all-trans-retinoic 

acid (atRA) signaling, which is a hormone-like signal originated from retinoic acid that 

controls Ah receptor expression. An intact atRA signal was needed to enable TCDD to 

trigger cleft palate development. In conclusion, cleft palates are birth defects of 

multifactorial origins involving both genetic and environmental components. However, there 

is still much to be learned regarding the MOA by which these defects are being induced by 

environmental chemicals.

Summary

Windows of sensitivity to chemicals in development of cleft palate correlate with 

palatogenesis in the species examined. The effects are related to dose and timing of 

exposure. Although the MOA underlying induction of cleft palate by different chemicals is 

not fully understood, current research is focused on the importance of interactions between 

environmental factors and genetics. Genetic variability in sensitivity to the development of 

cleft palate does exist, as intraspecies and interspecies differences have been reported. Some 

animal models such as mouse are viewed as helpful in determining the development of cleft 

palate with results potentially applicable to humans. Genome-wide regions have also been 

identified that play a role in cleft palate development. Together, these findings indicate that 

cleft palate resulting from chemical exposure is highly dependent on specific and generally 

narrow windows of sensitivity—windows modulated by a complex interaction of specific 

chemical, MOA, species, dose, timing, and genotype.
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Figure 1. 
Human and mouse developmental windows of orofacial development. Adapted from 

Sucheston and Cannon (1973) and from Chai and Maxson (2006).
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Figure 2. 
Summary of windows of sensitivity for animals.
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